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Abstract. By using the concept of duality between direct channel resonances and Regge exchanges we
relate the small- and large-x behavior of the structure functions. We show that even a single resonance
exhibits Bjorken scaling at large Q2.
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1 Introduction

Inspired by recent experimental measurements of the nu-
cleon structure functions at the JLab (CEBAF) [1], we
suggest a unified “two-dimensionally dual” picture of the
strong interaction [2–4] connecting low and high energies
(Veneziano, or resonance-reggeon duality [5]) with low and
high virtualities (Q2) (Bloom-Gilman, or hadron-parton
duality [6]). The basic idea of the unification is the use
of a Q2-dependent dual amplitudes, employing nonlinear
complex Regge trajectories providing an imaginary part of
the scattering amplitude, related to the total cross-section
and structure functions and thus saturating duality by a
finite number of resonances lying on the (limited) real part
of the Regge trajectories.

The resulting object, a deeply virtual scattering ampli-
tude, A(s, t,Q2), is a function of three variables, reducing
to a nuclear-structure function (SF) when t = 0 and to
an on-shell hadronic scattering amplitude for Q2 = m2. It
closes the circle in fig. 1. We use this amplitude to describe
the background as well as the resonance component [7].

The Q2-dependence of the residuae functions here will
be chosen in such a way as to provide for Bjorken scaling
at small x (large s). The resulting amplitude (structure
function) is applicable in the whole kinematical range, in-
cluding the resonance region. We call this unification “two
dimensional duality” —one in s, the other one in Q2.

In the early days of duality, off mass continuation was
attempted [8] by means of multileg (e.g., 6-point) dual
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amplitudes with “extra” lines taken at their poles. With-
out going into details, here we only mention that scaling
in this approach can be achieved [9] only with nonlin-
ear trajectories, e.g. those with logarithmic or constant
asymptotic.

2 Notation and conventions

We use standard notation for the cross-section and struc-
ture function (see fig. 2):

σγ∗p =
4π2α(1 + 4m2x2/Q2)

Q2(1 − x)
F2(x,Q2)

1 + R(x,Q2)
, (1)

where α is the fine structure constant, Q2 is minus the
squared four-momentum transfer or the momentum car-
ried by the virtual photon, x is the Bjorken variable and
s is the squared center-of-mass energy of the γ∗p system,
obeying the relation

s = Q2(1 − x)/x + m2
p , (2)

where mp is the proton mass and R(x,Q2) =
σL(x,Q2)/σT (x,Q2). For the sake of simplicity we set
R = 0, which is a reasonable approximation.

We use the norm where

σγ∗
T (s, t,Q2) = Im A(s, t,Q2) . (3)

According to the two-component duality picture [7], both
the scattering amplitude A and the structure function F2
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Fig. 1. Veneziano, or resonance-reggeon duality [5] and Bloom-
Gilman, or hadron-parton duality [6] in strong interactions.
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Fig. 2. Kinematics of deep inelastic scattering.

are sums of diffractive and nondiffractive terms. At high
energies both terms are Regge behaved. In γ∗p scattering
only positive-signature exchanges are allowed. The domi-
nant ones are the pomeron and the f reggeon, respectively.
The relevant scattering amplitude is (remember that here
t = 0)

Ai(s,Q2) = iβk(Q2)
(
−i

s

si

)αk(0)−1

, (4)

where α and β are the Regge trajectory and residue and
k stands either for the pomeron or the reggeon. As usual,
the residue will be chosen such as to satisfy approxi-
mate Bjorken scaling for the structure function [10,11].
It should be remembered that by factorization, assuming
that the reggeon (or pomeron) exchange is a simple pole,
the residue function is a product of two vertices —the
γγR(P ) and NNR(P ), where N stands for the nucleon
(see fig. 3).

At low energies the scattering amplitude is dominated
by the contribution of the near-by resonances. In the vicin-
ity of a resonance Res, the amplitude can be also written
in a factorized form — as aproduct of the probabilities
that two particles, γ and p, form a resonance with the

squared mass sRes and total width Γ :

A(s,Q2) =
∑
spin

Afi(Q2)A∗
if (Q2)

sRes − s − iΓ
, (5)

where Afi are the inelastic form factors.

3 Nucleon resonances in inelastic
electron-nucleon scattering

Some thirty years ago Bloom and Gilman [6] observed that
the prominent resonances in inelastic electron-proton scat-
tering do not disappear with increasing Q2 relatively to
the “background” but instead fall at roughly the same rate
as any background. Furthermore, the smooth scaling limit
proved to be an accurate average over resonance bumps
seen at lower Q2 and s.

Since then, the phenomenon was studied in a number
of papers [12,13] and recently has been confirmed exper-
imentally [1]. These studies were aimed mainly to answer
the question: in which way a limited number of resonances
can reproduce the smooth scaling behavior? The main the-
oretical tools in these studies were the finite-energy sum
rules and perturbative QCD calculations, whenever appli-
cable. Our aim instead is the construction of an explicit
dual model combining direct channel resonances, Regge
behavior, typical of hadrons and scaling behavior, typical
for the partonic picture.

The existence of resonances in the structure function
at large x, close to x = 1 by itself is not surprising: by
the relations (1) and (2) they are the same as in γ∗p to-
tal cross-section, but in a different coordinate system. The
important question is whether and, if so, how a small num-
ber of resonances (or even a single one) can reproduce the
smooth Bjorken scaling behavior, known to be an asymp-
totic property, typical of multiparticle processes.

The possibility that a limited (small) number of reso-
nances can build up smooth Regge behavior was demon-
strated by means of finite-energy sum rules [14]. Later it
was confused by the presence of an infinite number of nar-
row resonances in the Veneziano model [5], which made its
phenomenological application difficult, if not impossible.
Similar to the case of the resonance-reggeon duality [14],
hadron-parton duality was established [6] by means of the
finite-energy sum rules, but it was not realized explicitly
like the Veneziano model (or its further modifications).

Actually, the early onset of Bjorken scaling, called
“early, or precaution scaling” was observed with the first
measurements of deep inelastic scattering at SLAC, where
it was noticed that a more rapid approach to scaling can
be achieved with the Bloom-Gilman (BG) variable [6]
x′ = x/(1 + m2x2/Q2) instead of x (or ω = 1/x). More
recently the following generalization of the BG variable:

ξ =
2x

1 +
√

1 + 4m2x2

Q2

, (6)

was suggested by O. Nachtmann [15]. We use the stan-
dard Bjorken variable x, however our results can be easily
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Fig. 3. According to the Veneziano (or resonance-reggeon) duality a proper sum of either t channel or s channel resonance
exchanges accounts for the whole amplitude.

rewritten in terms of the above-mentioned modified vari-
ables.

First attempts to combine resonance (Regge) behavior
with Bjorken scaling were made [16–18] at low energies
(large x), with the emphasis on the right choice of the
Q2-dependence, such as to satisfy the required behavior
of the form factors, vector meson dominance (VMD) with
the requirement of the Bjorken scaling. (N.B.: the validity
(or failure) of the (generalized) VMD is still disputed.)
Similar attempts in the high-energy (low x) region became
popular recently, with the advent of the HERA data. They
will be presented in sect. 5.

A consistent treatment of the problem requires the ac-
count for the spin dependence. For simplicity, we ignore it
in this paper (see, e.g. [13]).

4 Factorization and dual properties
(bootstrap) of the vertices

Since the purpose of the present paper is the construc-
tion of a unified model realizing duality both in the s
and t channels, we first attempt to identify its fragments,
namely the vertices (to be interpreted later on as Q2-
dependent form factors).

Let us remind that the residue functions are com-
pletely arbitrary in the Regge pole model, but they are
constrained in the dual model. We show this by using the
low-energy (resonances) and high-energy (Regge) decom-
position on the simple Veneziano model [5]:

V (s, t) =
∫ 1

0

dzz−α(s)(1 − z)−α(t) =

B(1 − α(s), 1 − α(t)) =
Γ (1 − α(s))Γ (1 − α(t))

Γ (2 − α(s) − α(t))
. (7)

Furthermore,

V (s, t) =
∞∑

n=1

1
n − α(s)

Γ (n + α(t) + 1)
n! Γ (α(t) + 1)

. (8)

By the Stirling formula

V (s, t)

∣∣∣∣∣
|α(s)|→∞

→ [−α(s)]α(t)−1Γ
(
1 − α(t)

)

×
[

N∑
n=0

an(0)
[α(s)]n

+ 0
(

1
[α(s)]N+1

)]
(9)

and since for small |t| the Γ function varies slowly com-
pared with the exponential, the Regge asymptotic behav-
ior is

V (s, t) ∼ (α′s)α(t) , (10)

where β(t) = (α′)α(t) is the Regge residue.
Actually, one has to identify a single (and hence eco-

nomic!) Regge exchange amplitude with a sum of direct
channel poles. Such an identification is not practical for an
infinite number of poles (e.g., the Veneziano amplitude)
but, as we show below is feasible if their number is finite
(small). To anticipate the forthcoming discussion, we shall
feed the Q2-dependence in the Regge residue at high en-
ergies (small x and use the dual amplitude with a finite
number of resonances!) to the whole kinematical region,
including that of resonances. Relating the amplitude to
the SF, we set t = 0.

To remedy the problems of the infinite number of nar-
row resonance, nonunitarity and lack of an imaginary part,
we use a generalization of the Veneziano model free from
the above-mentioned difficulties.

5 Dual amplitude with Mandelstam
analyticity

The invariant dual on-shell scattering amplitude with
Mandelstam analyticity (DAMA) applicable both to the
diffractive and nondiffractive components reads [19]

D(s, t) =
∫ 1

0

dz

(
z

g

)−α(s′)−1(1 − z

g

)−α(t′)−1

, (11)

where s′ = s(1 − z), t′ = tz, g is a parameter, g > 1, and
s, t are the Mandelstam variables.

For s → ∞ and fixed t it has the following Regge
asymptotic behavior

D(s, t) ≈
√

2π

αt(0)
g1+a+ib

(
sα′(0)g ln g

αt(0)

)αt(0)−1

, (12)

where a = Re α
(

αt(0)
α′(0) ln g

)
and b = Im α

(
αt(0)

α′(0) ln g

)
.

The pole structure of DAMA is similar to that of the
Veneziano model except that multiple poles may appear at
daughter levels. The presence of these multipoles does not
contradict the theoretical postulates. On the other hand,
they can be removed without any harm to the dual model
by means of the so-called Van der Corput neutralizer. The
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procedure [19] is to multiply the integrand of (11) by a
function φ(x) with the properties:

φ(0) = 0, φ(1) = 1, φn(1) = 0, n = 1, 2, 3, ...

The function φ(x) = 1 − exp
(
− x

1−x

)
, for example, sat-

isfies the above conditions and results [19] in a standard,
“Veneziano-like” pole structure:

D(s, t) =
∑

n

gn+αt(0)
Cn

n − α(s)
, (13)

where

Cn =
αt(0)(αt(0) + 1)...(αt(0) + n + 1)

n!
. (14)

The pole term (13) is a generalization of the Breit-
Wigner formula (5), comprising a whole sequence of
resonances lying on a complex trajectory α(s). Such a
“reggeized” Breit-Wigner formula has little practical use
in the case of linear trajectories, resulting in an infinite se-
quence of poles, but it becomes a powerful tool if complex
trajectories with a limited real part and hence a restricted
number of resonances are used. Moreover, it appears that
a small number of resonances is sufficient to saturate the
direct channel.

Contrary to the Veneziano model, DAMA (11) not
only allows but rather requires the use of nonlinear com-
plex trajectories providing, in particular, for the imaginary
part of the amplitude, resonance widths and resulting in
a finite number of those. More specifically, the asymp-
totic rise of the trajectories in DAMA is limited by the
condition (in accordance with an important upper bound
derived earlier [20])∣∣∣∣ α(s)√

s ln s

∣∣∣∣ ≤ const , s → ∞ . (15)

Actually, this upper bound can be even lowered up to a
logarithm by requiring wide-angle scaling behaviour for
the amplitude.

Models of Regge trajectories combining the correct
threshold and asymptotic behaviors have been widely dis-
cussed in the literature (see, e.g. [21] for a recent treatment
of this problem). A particularly simple model is based on
a sum of square roots

α(s) = α0 +
∑

i

γi

√
si − s ,

where the lightest threshold (made of two pions or a pion
and a nucleon) is important for the imaginary part, while
the heaviest threshold limits the rise of the real part, where
resonances terminate.

Dual amplitude with Mandelstam analyticity with the
trajectories specified above is equally applicable to both:
the diffractive and nondiffractive components of the am-
plitude, the difference being qualitative rather than quan-
titative. The utilization of a trajectory with a single
threshold,

αE(s) = αE(0) + α1E(
√

sE −√
sE − s) , (16)

prevents the production of resonances on the the physi-
cal sheet, although they are present on the nonphysical
sheet, sustaining duality (i.e., their sum produces Regge
asymptotic behavior). This nontrivial property of DAMA
makes it particularly attractive in describing the smooth
background (dual to the pomeron exchange) (see [19]).
The threshold value, slope and the intercept of this exotic
trajectory are free parameters.

For the resonance component a finite sum in (13) is
adequate, but we shall use a simple model with lowest
threshold included explicitly and the higher ones approx-
imated by a linear term

αR(s) = αR(0) + α′s + α1R(
√

s0 −
√

s0 − s), (17)

where s0 is the lowest threshold —s0 = (mπ +mp)2 in our
case— while the remaining 3 parameters will be adjusted
to the known properties of the relevant trajectories (N∗
and ∆ isobar in our case). The termination of resonances,
provided in DAMA by the limited real part, here will be
effectively taken into account by a cutoff in the summation
of (13).

Finally, we note that a minimal model for the scatter-
ing amplitude is a sum

A(s, t, u) = c(D(s, t) + D(u, t)), (18)

providing the correct signature at high-energy limit, c is
a normalization factor. We disregard the symmetry (spin
and isospin) properties of the problem, concentrating on
its dynamics. In the limit s → ∞, t = 0 we have u = −s
and therefore

A(s, 0,−s)|s→∞ = c D(s, 0)(1 + (−1)αt(0)−1), (19)

where D(s, t) is given by eq. (12). For the total cross-
section in this limit we obtain

σγ∗
T = Im A = Cgαt(0)+a(sα′(0) ln g)αt(0)−1

·(sin(αt(0) − 1)π cos(b ln g)
+(1 + cos(αt(0) − 1)π) sin(b ln g)) , (20)

where C is a constant independent of s, g and α′(0).

6 Q2-dependence

Our main idea is to introduce the Q2-dependence in the
dual model by matching its Regge asymptotic behavior
and pole structure to standard forms, known from the
literature. The point is that the correct identification of
this Q2-dependence in a single asymptotic limit of the
dual amplitude will extend it to the rest of the kinematical
regions. We have two ways to do so:

a) combine Regge behavior and Bjorken scaling limits of
the structure functions (or Q2-dependent γ∗p cross-
sections);

b) introduce properly the Q2-dependence in the reso-
nance region.
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They should match if the procedure is correct and the
dual amplitude should take care of any further inter or
extrapolation.

It is obvious from eq. (4) that asymptotic Regge
and scaling behavior require the residue to fall like ∼
(Q2)−αi(0)+1. Actually, it could be more involved if we
require the correct Q2 → 0 limit to be respected and the
observed scaling violation (the “HERA effect”) to be in-
cluded. Various models to cope with the above require-
ments have been suggested [10,11,22]. At HERA, espe-
cially at large Q2, scaling is so badly violated that it may
not be explicit anymore.

In combining Regge asymptotic behavior with (ap-
proximate) Bjorken scaling, one can proceed basically in
the following way: keep explicitly a scaling factor x∆ (to
be broken by some Q2-dependence “properly” taken into
account) [11]

F2(x,Q2) ∼ x−∆(Q2)
( Q2

Q2 + Q2
0

)1+∆(Q2)

, (21)

where ∆(Q2) = αt(0)−1 may be a constant, in particular.
Note that since the Regge asymptotic of the Veneziano

model is ∼ (−α′s)α(t)−1, the only way to incorporate there
Q2-dependence is through the slope α′ [2,3], i.e. by mak-
ing the trajectories Q2-dependent, thus violating Regge
factorization. Q2-dependent intercepts were used earlier
[10,11] in a different context, namely to cope with the ob-
served “hardening” of small-x physics with increasing Q2

(Bjorken scaling violation). Although we do not exclude
this possibility (treating it as “effective” Regge pole, we
study here the different option of introducing scaling viola-
tion in the constant g appearing, besides α′, in the residue
of DAMA, eq (11).

From the explicit Regge asymptotic form of DAMA,
(20), and neglecting the logarithmic dependence of g we
make the following identification:

g(Q2)αt(0)+a =
(

Q2
lim

Q2 + Q2
0

)αt(0)

. (22)

Note that eq. (22) is transcendent with respect to g, since
a = a(g) = Re α

(
αt(0)

α′(0) ln g

)
. Another point to mention

is that this equation is not valid in the whole range of
Q2, since for Q2 close to Q2

lim, g may get smaller than
1, which is unacceptable in DAMA. For large Q2 the Q2-
dependence of the log g and b = b(Q2) = Im α

(
αt(0)

α′(0) ln g

)
in eq. (20) cannot be neglected, it might contribute to
scaling violation.

7 Scaling at large x

Let us now consider the extreme case of a single-resonance
contribution.

A resonance pole in DAMA contributes with

A(s, t) = gn+αt(0)
Cn

n − α(s)
.

At the resonance s = sRes one has Re α(sRes) = n and
Q2(1−x)

x = sRes − m2, hence

F2(x,Q2) =
Q2(1 − x)

4π2α
(
1 + 4m2x2

Q2

) Cn

Im α(sRes)
g(Q2)n+αt(0).

As x → 1 Q2 ≈ sRes−m2

1−x → ∞ and

F2(x,Q2) ∼ g
(sRes − m2

1 − x

)n+αt(0)

.

By using the approximate solution g(Q2) ≈(
Q2

lim/Q2
) αt(0)

αt(0)+a , where a is a slowly varying func-
tion of g, we get for x near 1

F2(x,Q2) ∼ (1 − x)
αt(0)(n+αt(0))

αt(0)+a ,

where the limits for x are defined by Q2
0� sRes−m2

1−x ≤Q2
lim.

We recognize a typical large-x scaling behavior (1−x)N

with the power N (counting the quarks in the reaction)
depending basically on the intercept of the t channel tra-
jectories.

8 Numerical estimates

Having fixed the Q2-dependence of the dual model by
matching its Regge asymptotic behavior with that of the
structure functions, we now use this dual model to ex-
trapolate down to the resonance region, where its pole
expansion (13) is appropriate —now complemented with
a Q2-dependence through g(Q2), fixed by eq. (22).

As already said, we write the imaginary part of the
scattering amplitude as the sum of two terms —a diffrac-
tive (background) and nondiffractive (resonance) one.
Note that g(Q2) has the same functional form (22) in both
cases, only the values of the parameters differ (they are
fixed from the small-x fits [22] of the SF).

At low, resonance, energies γ∗p scattering exhibits a
rich resonance structure, intensively studied in a number
of papers. About 20 resonances overlap, their relative im-
portance varying with Q2, but only a few can be identified
more or less unambiguously. These are: ∆+(1236) with
JP = 3+

2 , N∗+(1520), JP = 3−
2 , N∗+(1688), JP = 5+

2

and N∗+(1920) with JP = 7+

2 . They lie on the ∆ and
the exchange-degenerate N trajectories. In this work we
are mainly interested in introducing Q2-dependence into
the scattering amplitude, therefore we will concentrate on
a single resonance (∆+(1236)) at different values of Q2.
We use trajectories (17) in which the lowest pion-nucleon
threshold is included explicitly, while higher thresholds are
approximated by a linear term

α∆(s) = 0.1 + 0.84s + 0.1331(
√

s0 −
√

s0 − s) ,

where s0 = (m2
π + m2

N )1. The above values of the param-
eters are chosen so as to fit the known mass and width of

1 Actually, trajectories without any linear term (see, e.g.
[21]) could be more appropriate (and will be studied in the
future).
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Fig. 4. g(Q2) —the solution of the transcendent equa-
tion (22)— for the ∆ and the exotic trajectories.

Fig. 5. γ∗p total cross-section as a function of
√

s. The dashed
line shows the contribution from the ∆ resonance, the dot-
dashed line corresponds to the background, i.e. the contribu-
tion from the exotic trajectory. Here Q2 = 1 GeV2.

the ∆ resonance in a way consistent with the known linear
parameterizations.

In the interval of interest
√

s = 1.1–1.5GeV, t = 0,
we have u = m2

N − s < 0, so, it is far from resonance
region, therefore we neglect the contribution from D(u, t)
for both resonance and background terms.

The smooth background is also modeled by a single
term and exotic trajectory (16). As already explained, the
direct channel Regge pole does not produce here physical
resonances. The parameters of the exotic trajectory are

αE(s) = −0.25 + 0.25(
√

1.21 −√
1.21 − s), (23)

where sE = 1.12 GeV2 is an effective exotic threshold. Ob-
viously “pole” does not mean a resonance in this case.

Figure 4 shows g as a function of Q2 for ∆ and ex-
otic trajectories. The resulting cross-sections (imaginary
part of the amplitude) in the resonance region is shown

Fig. 6. γ∗p total cross-section as a function of
√

s. The dashed
line shows the contribution from the ∆ resonance, the dot-
dashed line corresponds to the background, i.e. the contribu-
tion from the exotic trajectory. Here Q2 = 6GeV2.

Fig. 7. γ∗p total cross-section as a function of
√

s and Q2. For
different values of Q2 we show the contributions from the ∆
resonance (dashed line), the background, i.e. the contribution
from the exotic trajectory (dot-dashed line) and their sum (full
line).

in figs. 5 and 6 for two values of Q2 = 1 and 6GeV2.
It is in qualitative agreement with the experimental data
[4]. Figure 7 shows the dual properties of the cross-section
in 2 dimensions —one is the squared energy s and the
other one is virtuality Q2. Table 1 shows the values of the
parameters used in our calculations.

The main conclusions from our analysis are that:

a) the Q2-dependence at low and high x (or high and low
s) are interrelated and have the same origin;

b) even a single (low energy) resonance can produce a
smooth scaling-like curve in the structure function
(parton-hadron duality).

To summarize, we have suggested an explicit dual model in
which the Q2-dependence introduced in the low-x domain
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Table 1. Parameters used in the calculations shown in figs. 4, 5
and 6. (Normalization coefficient c = 0.03.)

∆ Resonance Background

Q2
lim (GeV2) 62 120

Q2
0 (GeV2) 0.01 2.5

Dual αf (t) is αP (t) is
trajectory dual to α∆(s) dual to αE(s)

αf (0) = 0.9 αP (0) = 1 + 0.077

·
(
1 + 2Q2

Q2+1.117

)
[11]

is extended to the whole kinematic region, in particular
to the region of resonances. The resulting predictions for
the first resonance in the γ∗p system shown in figs. 5, 6
are in quantitative agreement with data.
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